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This article reviews recent literature on drought of the last millennium, followed
by an update on global aridity changes from 1950 to 2008. Projected future aridity
is presented based on recent studies and our analysis of model simulations.
Dry periods lasting for years to decades have occurred many times during
the last millennium over, for example, North America, West Africa, and East
Asia. These droughts were likely triggered by anomalous tropical sea surface
temperatures (SSTs), with La Niña-like SST anomalies leading to drought in
North America, and El-Niño-like SSTs causing drought in East China. Over Africa,
the southward shift of the warmest SSTs in the Atlantic and warming in the
Indian Ocean are responsible for the recent Sahel droughts. Local feedbacks may
enhance and prolong drought. Global aridity has increased substantially since the
1970s due to recent drying over Africa, southern Europe, East and South Asia,
and eastern Australia. Although El Niño-Southern Oscillation (ENSO), tropical
Atlantic SSTs, and Asian monsoons have played a large role in the recent drying,
recent warming has increased atmospheric moisture demand and likely altered
atmospheric circulation patterns, both contributing to the drying. Climate models
project increased aridity in the 21st century over most of Africa, southern Europe
and the Middle East, most of the Americas, Australia, and Southeast Asia. Regions
like the United States have avoided prolonged droughts during the last 50 years
due to natural climate variations, but might see persistent droughts in the next
20–50 years. Future efforts to predict drought will depend on models’ ability to
predict tropical SSTs.  2010 John Wiley & Sons, Ltd. WIREs Clim Change 2010 DOI: 10.1002/wcc.81

WHAT IS DROUGHT?

Drought is a recurring extreme climate event
over land characterized by below-normal

precipitation over a period of months to years.
Drought is a temporary dry period, in contrast to
the permanent aridity in arid areas. Drought occurs
over most parts of the world, even in wet and humid
regions. This is because drought is defined as a dry
spell relative to its local normal condition. On the
other hand, arid areas are prone to drought because
their rainfall amount critically depends on a few
rainfall events.1

Drought is often classified into three types2,3:
(1) Meteorological drought is a period of months to
years with below-normal precipitation. It is often
accompanied with above-normal temperatures, and
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precedes and causes other types of droughts. Mete-
orological drought is caused by persistent anomalies
(e.g., high pressure) in large-scale atmospheric circula-
tion patterns, which are often triggered by anomalous
tropical sea surface temperatures (SSTs) or other
remote conditions.4–6 Local feedbacks such as reduced
evaporation and humidity associated with dry soils
and high temperatures often enhance the atmospheric
anomalies.7 (2) Agricultural drought is a period with
dry soils that results from below-average precipitation,
intense but less frequent rain events, or above-normal
evaporation, all of which lead to reduced crop pro-
duction and plant growth. (3) Hydrological drought
occurs when river streamflow and water storages in
aquifers, lakes, or reservoirs fall below long-term
mean levels. Hydrological drought develops more
slowly because it involves stored water that is depleted
but not replenished. A lack of precipitation often trig-
gers agricultural and hydrological droughts, but other
factors, including more intense but less frequent pre-
cipitation, poor water management, and erosion, can
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also cause or enhance these droughts. For example,
overgrazing led to elevated erosion and dust storms
that amplified the Dust Bowl drought of the 1930s
over the Great Plains in North America.8

Few extreme events are as economically and
ecologically disruptive as drought, which affects mil-
lions of people in the world each year.3 Severe
drought conditions can profoundly impact agricul-
ture, water resources, tourism, ecosystems, and basic
human welfare. Over the United States, drought causes
$6–8 billion per year in damages on average, but as
much as $40 billion in 1988.9 Drought-related dis-
asters in the 1980s killed over half a million people
in Africa.10 The effect of drought varies with coping
capabilities. For example, people living in regions with
advanced irrigation systems, such as those in devel-
oped countries, can mitigate the impacts of drought
much better than farmers in Africa and other develop-
ing countries who often have limited tools to combat
droughts and other natural disasters. As global warm-
ing continues, the limited capabilities in developing
countries will become an increasingly important issue
in global efforts to mitigate the negative impact of
climate change.

HOW DO WE QUANTIFY DROUGHT?

In this section, I describe the indices commonly
used to monitor and quantify drought. Drought
is characterized by three main aspects2: intensity,
duration, and spatial coverage. Intensity is the degree
of the precipitation, soil moisture, or water storage
deficit; it may include consideration of the severity
of the associated impacts. Drought typically lasts for
several months to a few years, but extreme drought
can persist for several years, or even decades for so-
called mega-drought.11 The latter is linked to SST
decadal variations in the low-latitude Pacific and
Indian Oceans12,13 and the North Atlantic Ocean.14–16

Severe, prolonged droughts may be punctuated by
short-term wet spells. Mild droughts may occur over
a small region (e.g., a few counties), but severe ones
can cover most of a continent, such as the Dust Bowl
drought in the 1930s over North America.5,8

In modeling studies,4–6 simple precipitation
anomalies, preferably normalized by standard devi-
ation (SD) over regions with large gradients, are often
used to represent dry and wet conditions. Although
precipitation is often the dominant factor determin-
ing the aridity of a region, local droughts and wet
spells are determined by the cumulative effect of the
imbalance between atmospheric water supply (i.e.,
precipitation or P) and demand (i.e., potential evap-
otranspiration or PE). The former (P) is controlled

largely by atmospheric processes, whereas the latter
(PE) is determined by near-surface net radiation, wind
speed, and humidity.17

To better monitor and quantify drought, various
drought indices have been developed.10,18–21 Table 1
compares the most commonly used drought indices. A
drought index usually measures the departure from the
local normal condition in a moisture variable based on
its historical distribution. For meteorological drought,
precipitation is the primary variable in computing the
indices, with secondary contributions from surface air
temperature to account for the effect of evaporation
in some of the indices, such as the Palmer Drought
Severity Index (PDSI). For agricultural drought, soil
moisture content (not always measured) is often used,
whereas streamflow is commonly used in measuring
hydrological drought. Keyantash and Dracup20 evalu-
ated the performance of a number of commonly used
drought indices based on data from two local climate
zones in Oregon, USA, and suggested that the rainfall
deciles (RD), computed soil moisture (CSM), and total
water deficit are the top performing indices for mete-
orological, agricultural, and hydrological drought,
respectively.

The PDSI is the most prominent index of mete-
orological drought used in the United States.19 It also
has been used to quantify long-term changes in aridity
over global land in the 20th35,36 and 21st37,38 century,
and in tree-ring based reconstructions of drought.39,40

The PDSI was created by Palmer22 with the intent
to measure the cumulative departure in surface water
balance. It incorporates antecedent and current mois-
ture supply (precipitation) and demand (PE) into a
hydrological accounting system. Although the PDSI
is a standardized measure, ranging from about −10
(dry) to +10 (wet), of the surface moisture condition
that allows comparisons across space and time, the
normal climate conditions tend to yield more severe
PDSI in the Great Plains than other US regions.41

To improve the spatial comparability, one may re-
normalize local PDSI to have a standard deviation
(SD) similar to that in the central United States,
where the Palmer model was calibrated,22 or use the
self-calibrated PDSI,42 which re-calibrates to local
conditions and appears to be a superior drought
index.43,44 The PDSI is also imprecise in its treat-
ment of all precipitation as immediately available
rainfall (i.e., no delayed runoff from melting snow),
its lack of impact of vegetation or frozen soils on
evaporation, the non-locally calibrated coefficients,24

and some other processes.23 For example, Hobbins
et al.45 found that the PE estimate using the Thorn-
thwaite equation46 in the original Palmer model
could lead to errors in energy-limited regions, as
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the Thornthwaite PE is based only on temperature
and latitude. This error can be minimized, how-
ever, by using the Penman-Monteith (PM) equation,37

which accounts for the effects of radiation, humidity,
and wind speed and works best over Australia in a
comparison of various PE formulations by Donohue
et al.47

Despite these caveats, PDSI values are signifi-
cantly correlated with measured soil moisture content
in the warm season and streamflow over many regions
over the world,36 and thus can be used as a drought
index over the low and middle latitudes. Further-
more, the PDSI uses both precipitation and surface
air temperature as input, in contrast to many other
drought indices that are based on precipitation alone20

(Table 1). This allows the PDSI to account for the
basic effect of surface warming, such as that occurred
during the 20th century36 and may occur in the 21st

century,38 on droughts and wet spells. The effect of
surface temperature, which accounts for 10–30% of
PDSI’s variance, comes through PE. As precipitation
and surface air temperature are the only two climate
variables with long historical records, the PDSI makes
full use of these data and can be readily calculated for
the last hundred years or so for most land areas.36

For model-projected 21st century climate with
large warming, drought indices that consider pre-
cipitation only and do not account for changes in
atmospheric demand for moisture due to increased
radiative heating and surface warming may not work
well. Even for the indices that consider the whole sur-
face water budget, such as the PDSI, the interpretation
of their values for the future climate may need to be
revised. This is because all the drought indices have
been defined and calibrated for the current climate.
But with the large warming trend in the 21st century,

the future PDSI is greatly out of the range for the
current climate (cf. section on How Will Droughts
Change in Coming Decades?).

HOW ARE DROUGHTS CHANGING
AROUND THE WORLD?

In this section, I first provide a historical perspective by
examining how drought has varied over many regions
of the world during the last millennium, and then
present aridity changes since 1950, when instrumental
records are relatively abundant and rapid warming has
occurred, especially since the late 1970s. I then discuss
the causes of the recent aridity changes, especially
their relationship with greenhouse gas (GHG) induced
global warming.

Long-term Historical Perspective
Drought is a normal part of climate variations.
Tree-ring and other proxy data, together with
instrumental records, have revealed that large-scale
droughts have occurred many times during the past
1000 years over many parts of the world, includ-
ing North America,40,48–50 Mexico,16,51 Asia,52–64

Africa,65,66 and Australia.67,68 For example, succes-
sive ‘‘megadroughts’’, unprecedented in persistence
(20–40 year) yet similar in severity and spatial distri-
bution to the major droughts experienced in modern-
day’s North America, occurred during a 400-year-long
period in the early to middle part of the second mil-
lennium AD over western North America (Figure 1;
Ref 49). Compared with these multi-decadal droughts,
the modern-day droughts in the 1930s and 1950s
had similar intensity but shorter durations. It is
suggested13,49 that these medieval megadroughts were

3
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PDSI over West N. America

FIGURE 1 | Time series of the tree-ring reconstructed PDSI (<−1 for drought) averaged over western North America (25◦–50◦N, 95◦–125◦W)
from 1000 to 2003 AD (Reprinted with permission from Ref 49.)

 2010 John Wiley & Sons, L td.



WIREs Climate Change Drought under global warming

60

50

40

30

20

10

0

60

40

80

120

100

20

0
1700 1800 1900 200016001500

Year (AD)

A
re

a 
pe

rc
en

ta
ge

 (
%

)

A
re

a 
(×

10
4  

km
2 )1528

1679

1721
1785 1835 1877

1900

1928-29
1978

1972
1997

1991

1965-19661586-1589

1638-1641

Exceptional
drought

Extreme
drought

Severe 
drought

FIGURE 2 | Time series of percentage area (left ordinate) and actual area (right ordinate) over eastern China (22◦–40◦N, 105◦–122◦E) in very dry
conditions (severe drought or worse) during the last five centuries, created using GIS technique based on the network of the drought/flood index in
China of Zhang et al.55 Severe, extreme, and exceptional drought years stand out, with area percentages reaching 20, 30 and 40%, respectively.
(Reprinted with permission from Ref 74. Copyright 2007 Springer.)

likely triggered by multi-decadal La Niña-like SST
patterns in the tropical Pacific Ocean, as is the case
for the 19th and 20th centuries,69–72 including the
Dust Bowl drought of the 1930s5 when elevated dust
loading may also have enhanced the drought.8 The
La Niña-like SST patterns in the tropical Pacific may
also cause drought conditions in other parts of the
extra-tropics.72,73 Other studies14,16 also suggest a sig-
nificant role of the Atlantic multi-decadal Oscillation
(AMO) in causing prolonged droughts over the United
States and Mexico, although the AMO’s role is found
to through its modulation of El Niño-Southern Oscil-
lation’s (ENSO) influence in model simulations.15

Over East China, historical records revealed that
large-scale droughts occurred many times during the
last 500 years, with more widespread droughts dur-
ing 1500–1730 and 1900 to present and fewer ones
from 1730 to 190074 (Figure 2). The severe droughts
in East China, such as those occurred in 1586–1589,
1638–1641, and 1965–1966, usually develop first in
North China (34◦–40◦N), and then either expand
southward or move to the Yangtze River Valley
(27◦–34◦N) and the northern part of the southeast-
ern coastal area (22◦–27◦N).74,75 Similar southward
migration (at ∼3◦ latitude/decade) of multi-year dry
and wet anomalies was also found in the western
United States where the anomalies first developed in
the higher latitudes of the western United States75

A weakened summer monsoon and an anomalous
west- and north-ward displacement of the western
Pacific Subtropical High are linked to severe droughts
in East China.74,76 It is also suggested that large vol-
canic eruptions might be a trigger for severe droughts

in East China,74 and El Niño-like warming in the
tropical Pacific could lead to weakened summer mon-
soons and thus drier conditions in East China.77

Although Zhang et al.59 did not find a consistent
association between aridity and temperature anoma-
lies during the past millennium over the Yangtze Delta
region, the apparent trend toward more widespread
dry conditions since the early 20th century over entire
East China (Figure 2) is of great concern.

West Africa, where the severe and widespread
Sahel droughts of the 1970s and 1980s (Figure 3)
devastated the local population, has been the subject
of a very large number of studies.78–81 Proxy data for
African lake levels (Figure 4) indicate that very dry and
wet periods occurred in the early and late part of the
19th century, respectively, over West and East Africa.
The recent Sahel drought is not unusual in the context
of the past three millennia,66 which indicates that
natural monsoon variations in West Africa are capable
of causing severe droughts in the future. Many studies
have shown that the recent Sahel droughts resulted
primarily from a southward shift of the warmest
SSTs and the associated inter-tropical convergence
zone (ITCZ) in the tropical Atlantic,4,82–84 and
the steady warming in the Indian Ocean, which
enhances subsidence over West Africa through Rossby
waves.85,86 Reduced vegetation cover and surface
evaporation may have provided a positive feedback
that enhances and prolongs the droughts.84,87–89

Global Aridity Changes Since 1950
Instrumental records of precipitation, streamflow,
cloudiness, surface radiation, humidity, winds, and
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FIGURE 3 | Annual time series averaged over
the Sahel (18◦W–20◦E, 10◦N–20◦N, land only) for
observed precipitation from 1921 to 2008 (black),
Palmer Drought Severity Index (PDSI) (red) and
CLM3-simulated top-1 m soil moisture content
(green). The precipitation and soil moisture are
shown as normalized anomalies in units of
standard deviation (SD).
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other drought-relevant variables are sparse before
around 1950 over most of the globe. The period
since 1950 also has experienced rapid increases in
global surface temperature and atmospheric CO2 and
other GHGs.90 Thus, aridity changes since 1950 may
provide insights on whether drought will become
more frequent and widespread under global warming
in the coming decades, although natural variations
such as those revealed by proxy data (section Long-
term Historical Perspective) are needed in assessing
long-term trends. Many studies have examined recent
hydroclimate trends over various regions,67,91–94 and
some studies30,95 applied land model-simulated soil
moisture, forced by observation-based atmospheric
forcing, to characterize historical droughts.

In this section, an update and synthesis are given
of the global analyses of precipitation,96–98 PDSI,35,36

streamflow,99 and model-simulated soil moisture29,93

to depict aridity changes from 1950 to 2008 over
global land. The use of multiple variables in the anal-
ysis should alleviate the deficiencies associated with
individual drought indices and provide increased con-
fidence. Here, land precipitation data were derived
by merging the monthly anomaly data from Dai
et al.96 for the period before 1948, Chen et al.97 for
1948–1978, and Huffman et al.98 for 1979 to present.
The merging was done through re-scaling the different
data sets to have the same mean of Ref 98 over a com-
mon data period (1979–1996). Surface air tempera-
ture data used for the PDSI calculation were derived,
as in Dai et al.,36 by combining the HadCRUT3
anomalies100,101 and CRU climatology, both from
http://www.cru.uea.ac.uk/cru/data/temperature/. We
also examined the newly released GPCC v4 gridded
land precipitation data from 1901 to 2007 (ftp://ftp-
anon.dwd.de/pub/data/gpcc/html/fulldata download.

html) and found that for the period since around 1950,
the GPCC v4 showed changes similar to our merged
precipitation data, but for 1901–1949 the GPCC v4
showed different change patterns that are inconsis-
tent with previous analyses.96 Unlike Dai et al.,96 the
GPCC v4 product has data over areas without rain-
gauges nearby, often filled with climatological values
that make it difficult to assess which regions had
no observations and thus should be skipped in the
analysis.

Figure 5 shows the trend maps for annual surface
air temperature, precipitation, and runoff (inferred
from streamflow records) since around 1950. From
1950 to 2008, most land areas have warmed up by
1–3◦C, with the largest warming over northern Asia
and northern North America (Figure 5(a)). During
the same period, precipitation decreased over most
of Africa, southern Europe, South and East Asia,
eastern Australia, Central America, central Pacific
coasts of North America, and some parts of South
America (Figure 5(b)). As a result, runoff over river
basins in these regions has decreased (Figure 5(c)).
The broadly consistent trend patterns between the
independent records of precipitation and streamflow
suggest that the broad patterns exhibited by the
precipitation data (Figure 5(b)) are likely reliable. The
precipitation change patterns are also consistent with
satellite-observed vegetation changes, for example,
over Australia since the 1980s.102

To account for the basic effect of temperature
on surface water balance, monthly PDSI from 1850
to 2008 was calculated using the precipitation
and temperature data used in Figure 5 with the
Thornthwaite (an update to Dai et al.,36 referred
to as PDSI) and Penman-Monteith [Eq. (4.2.14) of
Shuttleworth17; referred to as PDSI pm] equation
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for PE, separately. In addition, the self-calibrated
PDSI of Wells et al.42 with the Penman-Monteith
PE (sc PDSI pm) was also calculated. Besides the
precipitation and temperature data, additional forcing
data of surface specific humidity, wind speed,
and air pressure from the NCEP/NCAR reanalysis
were used, together with cloud cover from surface
observations103 and surface net solar radiation from
the Community Land Model version 3 (CLM3)
simulation,29 in which observed cloud cover29 was
used to estimate surface downward solar radiation.

Surface net longwave radiation was estimated using
observed near-surface air temperature, vapor pressure
and cloud fraction based on Eq. (4.2.14) of
Shuttleworth.17 We emphasize that large uncertainties
likely exist in the data for surface wind speed and
radiation used here, as gridded, high-quality data
for these fields are unavailable over the global land.
Because of this, the PDSI results may not fully reflect
the impact of the actual changes in wind speed104 and
radiation on aridity since 1950.47 More details on the
PDSI characteristics are given in Dai.105
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As in Dai et al.,36 Figure 6 shows that global
PDSI fields from 1900 to 2008 contain two robust
modes of variability, with the first mode representing
a long-term trend (Figure 6(a)) of drying over Africa,
South and East Asia, eastern Australia, northern
South America, southern Europe, and most of Alaska
and western Canada (red areas in Figure 6(b)). This
mode is expected given that a similar trend mode is
seen in land precipitation fields.96 The second mode
is associated with the ENSO, because its temporal
variations are correlated with an ENSO index (red line
in Figure 6(c)) and its spatial patterns (Figure 6(d))

resemble those of ENSO-induced precipitation
anomalies.106 The fact that the global PDSI can
capture two physically sound modes provides some
confidence for using it as a proxy of aridity over
global land, besides its correlation with available
observations of soil moisture and streamflow.36

Figure 7 compares the trend patterns in PDSI,
PDSI pm, sc PDSI pm, and top-1 m soil moisture con-
tent from the CLM3 simulation forced with observed
precipitation, temperature, and other atmospheric
forcing (see Ref 29 for details). Although the CLM3
simulation accounts for the effect of cloud-induced
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FIGURE 6 | (left) Temporal (black) and (right) spatial patterns of the two leading EOFs of monthly PDSI from 1900 to 2008 (normalized by its
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sea-level pressure anomaly shifted to the right (i.e., lead) by 6 months to obtain a maximum correlation (r = 0.63) with the PC 2 time series. (a) The
percentage variance explained by the EOF is shown on the top of the left panels.

changes in radiation on evaporation, data for sur-
face wind speed, which affects surface evaporation,104

were taken directly from the NCEP/NCAR reanalysis
and thus may not reflect actual changes. Furthermore,
the CLM3 has deficiencies in simulating snow hydrol-
ogy, permafrost, ground water, and other processes.
Nevertheless, the CLM3 simulates the land surface
processes, including evaporation and soil moisture, in
a much more comprehensive way than the Palmer
model for PDSI, and the CLM3 simulation cap-
tures most of the observed variations and changes
in available soil moisture and streamflow records
over the globe.29,99 Thus, the CLM3-simulated soil
moisture provides another measure of aridity and
wetness.

The trends of the PDSI, PDSI pm, and
sc PDSI pm from 1950 to 2008 are very similar
(Figure 7(a)–(c)), with some quantitative differences
over Brazil, southern Africa, Australia, and a few
other places, and slightly smaller magnitudes for the
sc PDSI pm trend as it is calibrated to a narrower
range.105 This suggests that the PDSI trends are not

sensitive to the PE calculations over most land areas,
given the observed cloud cover changes and the surface
wind and humidity from the NCEP/NCAR reanalysis.
Furthermore, Figure 7 shows that the three forms
of the PDSI and the CLM3-simulated soil moisture
exhibit similar trend patterns, with some regional
differences, e.g., over Indonesia. For instance, both
the PDSI and soil moisture suggest drying during
the last 50–60 years over much of Africa, East
and South Asia, eastern Australia, southern Europe,
Alaska and northern Canada (except the Arctic areas),
while it has become wetter in the United States and
most of Western Australia. To the first order, these
patterns are similar to those for trends in precipitation
(Figure 5(b)) and runoff (Figure 5(c)), except for the
northern high latitudes (e.g., Siberia and Alaska)
where the upward runoff trend might have partly
resulted from thawing of the permafrost, which is not
well simulated in the CLM3 and not at all in the
Palmer model, or due to errors in the precipitation
data.99,107 Given that precipitation largely controls
the surface water balance over most land areas, it is
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FIGURE 7 | Maps of annual trends (red = drying) from 1950 to 2008 in PDSI (change per 50 years) with potential evapotranspiration (PE)
calculated using the (a) Thornthwaite and (b) Penman-Monteith (PM) equation, and (c) annual trends in self-calibrated PDSI with the PM potential
evaporation. Also shown (d) is the trend in top-1 m soil moisture content (mm/50 years) from 948 to 2004 simulated by a land surface model (CLM3)
forced by observation-based atmospheric forcing (see Ref 29 for details).

not unexpected that the PDSI from the simple Palmer
model can broadly reproduce the soil moisture trend
patterns from the much more comprehensive CLM3.
We also note that the trend in the CLM3-simualted
soil moisture (Figure 7(d)) is broadly comparable with
those simulated by a different land surface model with
different forcing data for 1950–2000 by Sheffield and
Wood.95

Figure 8 shows the annual time series averaged
over global (60◦S–75◦N) land since 1950 for the
PDSI, PDSI pm, and top-1 m soil moisture content
from two CLM3 simulations that were forced with
different intra-monthly forcing and different monthly
data for surface wind speed and humidity, together
with the PDSI and PDSI pm computed using all the
forcing data except with fixed temperature (dashed
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FIGURE 8 | Global land (60◦S–75◦N)
averaged annual time series of top 1 m soil
moisture anomaly (mm) simulated by a land
surface model (CLM3) forced with
observation-based estimates of monthly
temperature, precipitation, and solar
radiation with intra-monthly variations from
the NCEP-NCAR (black) and ERA-40 (green)
reanalysis (see Ref 29 for details), compared
with the similarly averaged PDSI time series
computed with both observed temperature
and precipitation (red solid line for PDSI with
Thornthwaite PE and magenta for PDSI with
Penman-Monteith PE) and precipitation only
(i.e., no temperature changes, dashed lines).
Results for averages over 40◦S–40◦N land
areas are very similar. The SC-PDSI pm is
similar to the PDSI pm.
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lines). Results for sc PDSI pm are similar to those for
PDSI pm105 and thus not shown in Figures 8 and 9.
Although there are differences among the curves, they
show similar year-to-year variations and all exhibit a
sharp downward (i.e., drying) trend from the late
1970s to the early 1990s. Since the early 1990s,
the CLM3-simulated soil moisture shows a slight
recovery, while the PDSI continues to decrease. The
PDSI pm recovers slightly in the mid-to-late 1990s
but resumes the downward trend since around 1999,
whereas the PDSI and PDSI pm with fixed temperature
shows an upward trend since the middle 1980s.

Defining the bottom 20 percentiles of the
monthly PDSI, PDSI pm and soil moisture as the dry
spells locally, one can compute the global dry area as
a percentage of total land area. Figure 9 shows that
the percentage dry area stayed around 14–20% from
1950 to 1982, when it experienced a sharp jump (by
∼10%) due to the 1982/83 El Niño, which reduced
precipitation over may land areas.106 Thereafter, an
upward trend is evident in all but the PDSI and
PDSI pm with fixed temperature cases (dashed lines in
Figure 9), which show little trend from 1983 to 2008.
We note that the PDSI case tends to overestimate the
recent drying compared with the PDSI pm and CLM3
cases.

These results suggest that precipitation was the
dominant driver for the changes in the terrestrial water
budget before the early 1980s; thereafter, surface
warming and cloud-induced changes in solar radiation
and other fields (i.e., wind speed and humidity) also
became important. Furthermore, the PDSI pm appears
to be a more reasonable measure of aridity than the
original PDSI, as the PDSI pm also considers changes

in surface radiation and other fields and thus is more
comparable to the CLM3 simulations, although the
trend patterns are similar (Figure 7). The sc PDSI pm
is very similar to PDSI pm, with slightly reduced
magntitudes as a result of the local calibration.

Can the Recent Changes be Attributed to
Human Activities?
The sharp decreases in the PDSI and soil moisture
from the late 1970s to the early 1990s (Figure 8)
mainly result from precipitation decreases in Africa
and East Asia. As mentioned above, the recent drought
in Africa is related to SST pattern changes in the
Atlantic and steady warming in the Indian Ocean.108

The warming in the Indian Ocean is likely related
to recent global warming, which is largely attributed
to human-induced GHG increases.90 The southward
shift of the warmest SSTs in the tropical Atlantic
is, however, likely a natural variation because GHG-
induced warming is larger in the North Atlantic than
in the South Atlantic Ocean,6 although the role of
anthropogenic aerosols109 cannot be ruled out. Over
East Asia, there is a decadal change around the late
1970s in rainfall patterns and associated summer
monsoon circulation, which has become weaker
since the late 1970s.76,77 Increased aerosol loading
from human-induced air pollution110 and warming
in tropical SSTs77 may both have played a major
role for the rainfall changes over East Asia. Model
simulations also suggest that increased aerosol loading
over the Northern Hemisphere may have played an
important role in the recent drying over the Sahel
and other tropical precipitation changes;109 however,
current models still have difficulties in simulating the
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FIGURE 9 | Time series of global dry areas
(defined locally as the bottom 20 percentiles)
as a percentage of the global (60◦S–75◦N) land
area based on the CLM3-simulated top-1 m soil
moisture content (green), and PDSI calculated
with both observed precipitation and
temperature and Thornthwaite (red solid line)
and Penman-Monteith (magenta solid line) PE,
and with precipitation only (dashed lines).
Monthly data were used in the PDSI and PE
calculations with variations on <12-month
time scales were filtered out before plotting.
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underlying physical processes because of large model
biases in tropical precipitation.111

A large part of the recent drying (Figure 9)
is related to the shift toward more intense and
frequent warm events (i.e., El Niños) of ENSO since
the late 1970s.112 This is because El Niños often
reduce precipitation over many low-latitude land
areas.71,72,106 This shift in ENSO is statistically a
rare event, but it is unknown whether this is related to
recent global warming. Some climate models predict
an El Niño-like warming pattern in the tropical Pacific
under increased GHGs, but it is not a robust response
in all models.113–115 Given that current climate models
still have large deficiencies in simulating ENSO and
other tropical variability,116,117 we cannot attribute
the recent ENSO shift (and thus the related jump
toward drying over land) to anthropogenic forcing or
natural variability.

Besides the El Niño-related drying, the above
results also show that the recent surface warming
has enhanced evaporative demand over land and
contributed to the drying since the 1980s. Because a
large part of the recent surface warming is attributed
to human-induced GHG increases,90 we can conclude
that anthropogenic GHG increases have contributed
to the recent drying over land. Furthermore, the
increased GHGs likely have contributed to the
warming in the Indian Ocean and the tropical Pacific,
which in turn have contributed to the drying in
Africa and East Asia, respectively. Therefore, we
can conclude that human activities have contributed
significantly to the recent drying over land, although
natural variations in ENSO, tropical Atlantic SSTs,
and Asian monsoons also have played a large role.

HOW WILL DROUGHTS CHANGE IN
COMING DECADES?

In this section, I present an assessment of how
droughts might change based on future climates
simulated by numerical models. It is of a great concern
that extreme climate events such as droughts are
expected to experience large percentage changes.118 As
the land surface warms up due to increased downward
longwave radiation from increased water vapor and
other GHGs, atmospheric demand for water vapor
(i.e., PE) could increase,119,120 as shown by the time
series differences between the dP and dP + dT cases
in Figures 8 and 9. However, other factors such
as surface net solar radiation, humidity, and wind
speed also affect PE. If atmospheric water supply (i.e.,
precipitation) over a region does not match or exceed
increases in PE, then aridity would increase.

Figure 10114 shows the IPCC AR4 multi-
model ensemble-mean change from 1980–1999 to
2080–2099 under the SRES A1B (a medium emis-
sions) scenario for annual (a) precipitation, (b) soil
moisture, (c) runoff, and (d) evaporation. Unlike evap-
oration, which increases over most of the globe
except for a few arid land regions and a few
oceanic areas (where cooling occurs), precipitation
shows widespread decreases around the subtropical
zones. This precipitation decrease is attributed to the
widening of the descending branches of the Hadley
circulation121 and increased atmospheric stability at
the margins of tropical convection.122,123 Over land,
however, the change patterns are similar between
evaporation and precipitation, which further suggests
that evaporation over land is controlled primarily
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FIGURE 10 | Multi-model mean changes from 1980–1999 to 2080–2099 under the SRES A1B scenario in annual (a) precipitation (mm/day),
(b) soil moisture (%), (c) runoff (mm/day), and (d) evaporation (mm/day). The stippling indicates where at least 80% of the models agree on the sign
of the mean change. (Reprinted with permission from Ref 114. Copyright 2007 Cambridge University Press.)

by precipitation.29 Runoff change patterns generally
follow those of land precipitation (Figure 10(a) and
(c)), which is the main driver for runoff.29 On the other
hand, soil moisture shows quite different change pat-
terns (Figure 10(b)) that indicate drying over most of
the land areas including most of the northern mid-
high latitudes, where precipitation is increased. Even
at low latitudes (e.g., southern Asia and northwestern
South America), soil moisture changes do not always
match precipitation changes (Figure 10). This demon-
strates that one should not use total precipitation alone
to measure changes in aridity or drought, as done in
many studies.122,123 Increased heavy precipitation and
reduced light to moderate rain124,125 can increase the
runoff to precipitation ratio, and increases in surface
air temperature and radiative heating can lead to
higher atmospheric demand for moisture. These pro-
cesses can result in drier soils even if the precipitation
amount increases. Figure 10 also shows that many
of the AR4 models produce different soil moisture
changes (of opposite sign) over many regions where
they agree on the sign of changes in temperature,114

precipitation, evaporation, and runoff, such as the

northern high latitudes. This implies large uncertain-
ties in simulating land hydrology and soil moisture
response in current models.

Analyzing soil moisture data from the IPCC
AR4 simulations from 15 coupled models under the
SRES A1B scenario, Wang126 found general drying
over most of the global land except part of the
northern mid- and high-latitudes during the non-
growing season and warned a world-wide agricultural
drought by the late 21st century. Examining soil
moisture data from eight AR4 models, Sheffield and
Wood127 found that global soil moisture decreases in
all of the models for all scenarios with a doubling of
both the spatial extent of severe soil moisture deficits
and frequency of short-term (4–6-month duration)
droughts from the mid-20th century to the end of the
21st century, while long-term (>12 months) droughts
become three times more common.

Besides soil moisture, other drought indices
also have been computed using surface fields from
model outputs and used to assess future drought
changes.37,38 Using data from the Hadley Centre
atmospheric general circulation model (AGCM) and
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other AGCM 2× CO2 equilibrium runs, Burke and
Brown38 computed four difference drought indices,
including the PDSI pm. They found that, despite
regional differences, all of the indices that take
atmospheric moisture demand into account suggest
a significant increase in global drought areas when
CO2 doubles.

Here monthly PDSI pm and sc PDSI pm were
computed using multi-model ensemble-mean monthly
data of precipitation, surface air temperature, specific
humidity, net radiation, wind speed, and air pressure
from 22 coupled climate models participated in the
IPCC AR4,128 and used to assess changes in aridity
over global land. Thus, these PDSI values may be
interpreted as for the multi-model mean climate
conditions. As the PDSI is a slow varying variable,
the lack of high-frequency variability in the ensemble-
mean climate is unlikely to induce mean biases.

Figure 11 shows the select decadal-mean
sc PDSI pm maps from the 1950s to 2090s from
the IPCC 20th century (20C3M) and SRES A1B
scenario simulations. Results for PDSI pm are similar
with slightly larger magnitudes. A striking feature
is that aridity increases since the late 20th century
and becomes severe drought (sc PDSI pm <−3) by
the 2060s over most of Africa, southern Europe and
the Middle East, most of Americas (except Alaska
and northern Canada, Uruguay, and northeastern
Argentina), Australia, and Southeast Asia; while it
becomes progressively wetter over most of central
and northern Eurasia, Alaska and northern Canada,
and India. This feature is also evident in the trend
maps of PDSI pm shown by Burke et al.37 using
data from the Hadley Centre coupled model alone
under the SRES A2 (a high emissions) scenario.
Increased precipitation (Figure 10(a)) is the main
cause for the wetting over central and northern
Eurasia, northern North America, India, Uruguay and
northeastern Argentina, and eastern central Africa;
while precipitation decreases over Central America,
the Southwest United States, the Mediterranean
region, and southern Africa are largely responsible
for the drying there. Over many mid-latitude and
subtropical regions (e.g., northern Australia and
Southeast Asia, Figure 10(a)), however, increased
evaporation is a major cause for the increased aridity
(Figure 11).

The patterns shown in Figure 11 are consistent
with published regional analyses of projected aridity
changes in the 21st century, often by a smaller
number of models than used here. These include
decreases in precipitation-minus-evaporation over
southwestern North America129 and Mexico,51

streamflow decreases over most of (except northern)

Europe,130 increases in drought frequencies over most
of Australia.131 Figure 11 is also broadly consistent
with the trends in model-simulated soil moisture126,127

(Figure 10), and the PDSI pm trends of Burke et al.37

and Burke and Brown.38

We emphasize that quantitative interpretation of
the PDSI values shown in Figure 11 requires caution
because many of the PDSI values, which are calibrated
to the 1950–1979 model climate, are well out of the
range for the current climate, based on which the
PDSI was designed. Nevertheless, Figure 11, together
with all the other studies cited above, suggests that
drought may become so widespread and so severe
in the coming decades that current drought indices
may no longer work properly in quantifying future
drought.

SUMMARY AND CONCLUDING
REMARKS

In this article, a brief review is presented on the
definition of drought, common drought indices, and
recent literature on the occurrence and causes of
drought in the 20th and earlier centuries, followed
by an updated analysis of global aridity changes from
1950 to 2008 using multiple sources of data. Projected
aridity changes in the 21st century are also presented
based on published studies and our new analysis of
model output from simulations under the SRES A1B
scenario by 22 coupled models that participated in the
IPCC AR4.

Recent studies revealed that persistent dry
periods lasting for multiple years to several
decades have occurred many times during the last
500–1000 years over North America, West Africa,
and East Asia. These historical droughts are linked
to tropical SST variations, with La Niña-like SST
anomalies in the tropical Pacific often leading
to widespread drought in North America, and
El-Niño-like SST warming in the Pacific causing
drought in East China. Over Africa, the southward
shift of the warmest SSTs in the tropical Atlantic and
warming in the Indian Ocean are the main causes of
the recent Sahel droughts. Land cover changes and
local feedbacks, such as increased dust loading during
the Dust Bowl drought over North America in the
1930s, decreased vegetation cover in the Sahel during
the 1970s and 1980s, and reduced local evaporation
and relative humidity during droughts in general, may
enhance and prolong droughts triggered by tropical
SSTs or other anomalies in atmospheric circulations.

Since the middle 20th century, global aridity
and drought areas have increased substantially,
mainly due to widespread drying since the 1970s
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FIGURE 11 | Mean annual sc-PDSI pm for years (a) 1950–1959, (b) 1975–1984, (c) 2000–2009, (d) 2030–2039, (e) 2060–2069, and
(f) 2090–2099 calculated using the 22-model ensemble-mean surface air temperature, precipitation, humidity, net radiation, and wind speed used in
the IPCC AR4 from the 20th century and SRES A1B 21st century simulations.128 Red to pink areas are extremely dry (severe drought) conditions while
blue colors indicate wet areas relative to the 1950–1979 mean.

over Africa, southern Europe, East and South Asia,
eastern Australia, and many parts of the northern
mid-high latitudes. Although natural variations in
ENSO, tropical Atlantic SSTs, and Asian monsoons
have played a large role in the recent drying, the
rapid warming since the late 1970s has increased
atmospheric demand for moisture and likely altered
atmospheric circulation patterns (e.g., over Africa and
East Asia), both contributing to the recent drying
over land. Since a large part of the recent warming is
attributed to human-induced GHG increases,90 it can
be concluded that human activities have contributed
significantly to the recent drying trend.

Reduced pan evaporation, a proxy for PE,
over Australia, East China, and other regions during
recent decades104 may alleviate the drying trend
induced primarily by precipitation, temperature, and
cloudiness changes examined here. Nevertheless, the
precipitation and streamflow records (Figure 5(b) and
(c)) and previous studies56,58,67 all show drying over

East Australia and much of East China during the
recent decades. This suggests that the effect of the
reduced PE on aridity is likely secondary to that of
recent changes in precipitation and temperature over
these regions.

Coupled climate models used in the IPCC AR4
project increased aridity in the 21st century, with a
striking pattern that suggests continued drying over
most of Africa, southern Europe and the Middle East,
most of Americas (except Alaska, northern Canada,
Uruguay, and northeastern Argentina), Australia, and
Southeast Asia. Some of these regions, such as the
United States, have fortunately avoided prolonged
droughts during the last 50 years mainly due to
decadal variations in ENSO and other climate
modes, but people living in these regions may see
a switch to persistent severe droughts in the next
20–50 years, depending on how ENSO and other
natural variability modulate the GHG-induced drying.
As cuts to global GHG emissions are hard to
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materialize, geoengineering (e.g., by putting sulfate
aerosols into the stratosphere) as the last resort to
combat global warming has been proposed,132 but it
may cause widespread drought and other unintended
adverse effects.133,134

Many of current AGCMs are capable of simu-
lating the precipitation deficits during recent droughts
over North America and Africa given the observed
global (especially tropical) SST anomalies.4–6,71,72 Fur-
ther advances in model developments may make it
possible to predict drought on seasonal to decadal
time scales.135 A big challenge for such predictions
will be predicting tropical SST variations on seasonal
to decadal time scales, which requires coupled GCMs
(CGCMs) and estimates of future GHGs, aerosols, and
other external forcing (e.g., the solar cycle and vol-
canic eruptions). However, current CGCMs still have
large deficiencies in simulating tropical precipitation,
ENSO, the intra-seasonal oscillation, and other trop-
ical variability.116,117,136 Substantial improvements
will be required before the CGCMs can be used to
predict tropical SST variations on seasonal to decadal
time scales that would enable prediction of droughts
over North America, Africa, Asia, Australia, and other
parts of the world.

Besides the tropical deficiencies, current cli-
mate models still have large deficiencies in simulat-
ing precipitation frequency and intensity,1,136 clouds,
aerosols’ effects, land hydrology, and other processes;
and future emissions such as aerosol loading may
be very different from those used in the IPCC AR4
21st century simulations. Furthermore, large regional
differences exist among the models and among dif-
ferent drought indices.38 It is also possible that the

PM equation overestimates PE under the warming cli-
mate of the 21st century and that the current drought
indices such as the PDSI may not be applicable to the
future climate. On the other hand, the PDSI and the
PM equation have worked for the current and past
climates. The fact that they may not work for the 21st

century climate itself is a troubling sign. Despite all
these uncertainties, the large-scale pattern shown in
Figure 11 appears to be a robust response to increased
GHGs. This is very alarming because if the drying is
anything resembling Figure 11, a very large popula-
tion will be severely affected in the coming decades
over the whole United States, southern Europe, South-
east Asia, Brazil, Chile, Australia, and most of Africa.

As alarming as Figure 11 shows, there may still
be other processes that could cause additional drying
over land under global warming that are not included
in the PDSI calculation. For example, both thermody-
namic arguments124 and climate model simulations125

suggest that precipitation may become more intense
but less frequent (i.e., longer dry spells) under GHG-
induced global warming. This may increase flash
floods and runoff, but diminish soil moisture and
increase the risk of agricultural drought.

Given the dire predictions for drought, adap-
tation measures for future climate changes should
consider the possibility of increased aridity and
widespread drought in coming decades. Lessons
learned from dealing with past severe droughts, such
as the Sahel drought during the 1970s and 1980s,137

may be helpful in designing adaptation strategies for
future droughts.
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