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Increasing drought under global warming in
observations and models

Aiguo Dai

Historical records of precipitation, streamflow and drought
indices all show increased aridity since 1950 over many land
areas1,2. Analyses of model-simulated soil moisture3,4, drought
indices1,5,6 and precipitation-minus-evaporation7 suggest in-
creased risk of drought in the twenty-first century. There
are, however, large differences in the observed and model-
simulated drying patterns1,2,6. Reconciling these differences is
necessary before the model predictions can be trusted. Previ-
ous studies8–12 show that changes in sea surface temperatures
have large influences on land precipitation and the inability of
the coupled models to reproduce many observed regional pre-
cipitation changes is linked to the lack of the observed, largely
natural change patterns in sea surface temperatures in coupled
model simulations13. Here I show that the models reproduce not
only the influence of El Niño-Southern Oscillation on drought
over land, but also the observed global mean aridity trend from
1923 to 2010. Regional differences in observed and model-
simulated aridity changes result mainly from natural variations
in tropical sea surface temperatures that are often not captured
by the coupled models. The unforced natural variations vary
among model runs owing to different initial conditions and thus
are irreproducible. I conclude that the observed global aridity
changes up to 2010 are consistent with model predictions,
which suggest severe and widespread droughts in the next 30–
90 years over many land areas resulting from either decreased
precipitation and/or increased evaporation.

Although the historical and future aridity changes have been
discussed in previous studies1–7, there still is a need to validate
the historical changes and reconcile them with model projections.
Here I focus on synthesizing the observed aridity changes
and comparing and reconciling them with model-simulated
changes, thereby improving our understanding of global-warming-
induced drought changes.

Different drought indices can result in somewhat different
change patterns, especially on small scales14. Here I focus on
the large-scale drying trends in precipitation, streamflow and
soil moisture fields, which are commonly used to quantify,
respectively, meteorological, hydrologic and agricultural drought1.
Because historical records of soil moisture are sparse, I also
used the self-calibrated Palmer drought severity index (PDSI)
with potential evapotranspiration estimated using the Penman–
Monteith equation (sc_PDSI_pm; ref. 2). The PDSI is calculated
from a water-balance model forced with observed precipitation
and temperature and has been widely used in monitoring drought
development over the USA, palaeoclimate reconstruction15 and
studying aridity changes2,5,6,16. The revised sc_PDSI_pm has
improved spatial comparability and uses a more realistic estimate
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of potential evapotranspiration, thus improving its applicability to
global warming scenarios (see ref. 2 formore details).

Figure 1a,b shows that the broad patterns of the linear trends
from 1950 to 2010 in observed annual precipitation and calculated
sc_PDSI_pm using observation-based forcing2 are comparable.
These patterns are also broadly comparable to those seen in
observed streamflow trends since 1948 in the world’s main river
basins1,17. Some regional and quantitative differences are expected
among them as they are different variables, albeit closely related
physically. The patterns are characterized by drying over most of
Africa, southeast Asia, eastern Australia and southern Europe, and
increased wetness over the central US, Argentina and northern
high-latitude areas. As the precipitation and streamflow data are
from independent measurements, the broad consistency among
their change patterns suggests that these trends are real. This
also suggests that the sc_PDSI_pm is a useful measure of aridity
changes. One advantage of the sc_PDSI_pm is that it can be
used to examine the impact of individual forcing on the aridity
trend by comparing the cases with and without this forcing
in calculations of the sc_PDSI_pm. Figure 1c shows that the
warming since the 1980s (note the jump around the early 1980s
is due to the 1982/1983 El Niño) has contributed considerably
to the upward trend in global drought areas, increasing the
areas under drought by about 8% by the first decade of this
century. This warming-induced drying results from increased
evaporation and is largest over northern mid-high latitudes2. In
contrast, precipitation decreases over Africa, southeast Asia, eastern
Australia and southern Europe are the primary cause for the
drying trend over there, and the long-term trends and decadal
to multidecadal variations in sea surface temperature (SST) are
a major driver for many of the precipitation changes8–12. The
long-term SST trend is part of the global warming; however, many
of the observed decadal to multidecadal SST variations are absent
in greenhouse-gas- (GHG) and aerosol-forced coupled model
simulations13, implying that these SST variations are unforced,
natural variations whose phase or timing and spatial patterns may
depend on the initial conditions of the models and thus they are
generally irreproducible.

To study how drought might change under increasing GHGs,
I analysed coupled climate model simulations under intermediate
future GHG emissions scenarios from the Coupled Model Inter-
comparisonProject phase 3 (CMIP3) and the newphase 5 (CMIP5).
The sc_PDSI_pmmaps for future decades based on theCMIP3were
briefly discussed in ref. 1, but were not comparedwith the simulated
soil-moisture and historical sc_PDSI_pm changes. Figure 2a shows
that most (more than 82%) of the 14 CMIP5 models analysed
here show decreases in soil-moisture content in the top-10 cm
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Figure 1 | Trend maps for precipitation and sc_PDSI_pm and time series of percentage dry areas. Long-term trends from 1950 to 2010 in annual mean
a, observed precipitation2 and b, calculated sc_PDSI_pm using observation-based forcing2. The stippling indicates the trend is statistically significant at
the 5% level, with the effective degree of freedom computed using the method of ref. 30. Note a change of 0.5 in the sc_PDSI_pm is significant in the sense
that a value of PDSI between−0.5 to−1.0,−1.0 to−2.0,−2.0 to−3.0 and−3.0 to−4.0 indicates, respectively, a dry spell, mild drought, moderate
drought and severe drought2. c, Smoothed time series of the drought area as a percentage of global land areas based on the sc_PDSI_pm computed with
(red line) and without (green line) the observed surface warming. The drought areas are defined locally as the cases when sc_PDSI_pm is below the value
of the twentieth percentile of the 1950–1979 period (results are similar for drought defined as PDSI <−2.0 and for using a longer base period from 1948 to
2010).
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Figure 2 | Future changes in soil moisture and sc_PDSI_pm. a, Percentage changes from 1980–1999 to 2080–2099 in the multimodel ensemble mean
soil-moisture content in the top 10 cm layer (broadly similar for the whole soil layer) simulated by 11 CMIP5 models under the RCP4.5 emissions scenario.
Stippling indicates at least 82% (9 out of 11) of the models agree on the sign of change. b, Mean sc_PDSI_pm averaged over 2090–2099 computed using
the 14-model ensemble mean climate (including surface air temperature, precipitation, wind speed, specific humidity and net radiation) from the CMIP5
simulations under the RCP4.5 scenario. A sc_PDSI_pm value of−3.0 or below indicates severe to extreme droughts for the present climate, but its
quantitative interpretation for future values in b may require modification.

layer during the twenty-first century over most of the Americas,
Europe, southern Africa, most of the Middle East, southeast Asia
and Australia. The multimodel mean suggests decreases ranging
from 5 to 15% by 2080–2099. The drying in the soil-moisture
field is largely reproduced by the sc_PDSI_pm calculated using
the same multimodel mean climate, although the sc_PDSI_pm
suggests larger increases in wetness over central and eastern Asia
and northern North America (Fig. 2b). Similar changes (but with
some regional differences) are also seen in CMIP3 models3,4 (Sup-
plementary Fig. S1) and in all seasons (Supplementary Fig. S2).

As SSTs have large influences on land precipitation and drought,
here I carried out amaximumcovariance analysis18 (MCA) of global
fields of SSTs (40◦ S–60◦N) and sc_PDSI_pm (60◦ S–75◦N) from
both observations and the CMIP models (also done for SST versus
soil moisture for the model data). The goal is to examine whether
the models can reproduce the observed relationship revealed by the
leading MCA modes between SST and sc_PDSI_pm and whether
the models can simulate the recent drying trend. By focusing on
the leading MCA modes, many (but not all) of the unforced,
irreproducible natural variations are excluded in such comparison.

Figure 3 shows that the second MCA modes (MCA2) from
observations and the models are remarkably similar in spatial

patterns. They both represent the variations induced by the El
Niño-Southern Oscillation (ENSO), as the SST patterns (Fig. 3b,d)
resemble the typical ENSO-induced SST anomaly patterns12 and
the temporal coefficient is highly correlated (r = 0.87) with an
ENSO index (Fig. 3a). There are substantial decadal tomultidecadal
variations in this ENSO mode from observations as noticed
previously19, with the recent period since about 1999 becoming
cooler in the central and eastern Pacific than the previous period
from 1977 to 1998 (Fig. 3a,b). For the MCA2, we focus on the
similarity in the spatial patterns between the observations and
models, as the temporal coefficient for the multimodel ensemble
mean (not shown) should bear little resemblance to the observed
temporal evolution, which is realization dependent. The impact of
ENSO on drought is reflected by the MCA2 for the sc_PDSI_pm,
whose patterns (Fig. 3c,e) largely resemble those of ENSO-induced
precipitation20, with drier conditions over Australia, south Asia,
northern South America, the Sahel and southern Africa and wetter
conditions over the continental USA, Argentina, southern Europe
and southwestern Asia in El Niño years.

Figure 4 shows that the first leading MCA modes (MCA1)
from observations and the models represent the global warming,
as the temporal coefficient is correlated strongly (r = 0.97) with
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Figure 3 | Temporal and spatial patterns of the MCA2 mode for SST and sc_PDSI_pm from observations and models. a, Temporal (black line for SST, red
line for sc_PDSI_pm, on the left-side ordinate) and b–e, spatial expansion coefficients of the second leading mode from a MCA of 13-point
moving-averaged monthly SST from observations27 and sc_PDSI_pm computed from observational forcing (a–c) and from 14 CMIP5 model
ensemble-mean simulations (d,e) for 1923–2010 (observational data are unreliable for earlier years). The blue line in a is the observed Nino3.4 SST index
(right-side ordinate) obtained from http://www.esrl.noaa.gov/psd/forecasts/sstlim/Globalsst.html (for 1950–2010) and from http://www.cgd.ucar.edu/
cas/catalog/climind/TNI_N34/index.html#Sec5 (for pre-1950 years, rescaled to match the National Oceanic and Atmospheric Administration index over
the 1950–2007 common data period). In a, SFC is the squared fractional covariance explained by the MCA mode and the r1 and r2 are the correlation
coefficients between, respectively, the black and red, and the black and blue curves. pVar is the percentage variance explained by the MCA mode in b–e.
The spatial pattern correlation coefficient is 0.81 between b and d and 0.48 between c and e, both are statistically significant at the 1% level.

the observed global mean surface temperature (Fig. 4a) and the
SST MCA1 patterns (Fig. 4c) resemble the observed warming
patterns over the oceans21. For the same period, the MCA1
from the models show similar nonlinear global warming trends,
with ubiquitous warming over the oceans. Associated with this
mode, the sc_PDSI_pm, whose short-term variability results
mainly from precipitation variations, also exhibits similar temporal
evolution (Fig. 4a,b) but with more complex spatial patterns
(Fig. 4d,f) that resemble those shown in its trend map (Fig. 1b)
for observations. For the models, the global mean warming mode
from observations is well captured by the GHG-forced CMIP
simulations for both SST and sc_PDSI_pm (Fig. 4a,b), with a
correlation of 0.86 and a regression coefficient of 0.9566 between
the global mean sc_PDSI_pm anomalies represented by the MCA1

from observations (as the predictor) and the models (as the
predictand; Fig. 4a,b). The result suggests that the GHG-forced
global aridity changes simulated by the models are consistent with
the historical changes.

The MCA1 spatial patterns for sc_PDSI_pm from the models
(Fig. 4f) differ considerably from those in observations (Fig. 4d),
trend maps (Fig. 2b) and the MCA1 for a longer period from 1950
to 2099 (Fig. 5c). Our analysis of the sc_PDSI_pm from individual
models (for example, MCA2 in Supplementary Figs S3 and S4)
showed large intermodel variations for this mode for the period
from 1923 to 2010 owing to large unforced natural variations and
weak GHG-forced signals in precipitation during this time. The
trend mode for the sc_PDSI_pm in the individual model runs
accounts for only 4–6% of the total variance; they are not robust
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Figure 4 | Temporal and spatial patterns of the MCA1 mode for SST and sc+PDSI_pm from observations and models. a–f, The blue line (right-side
ordinate) is the global mean surface temperature from observations31 in a and global mean surface air temperature from the models in b, which is the
temporal coefficient of the MCA1 for the model SST (black) and sc_PDSI_pm (red). The correlation between the black (red) lines in a and b is 0.85 (0.86)
and the regression coefficient (with the observation as the predictor) between the SST (sc_PDSI_pm) anomalies represented by the MCA1 mode for the
observation and models is 0.9119 (0.9566). The product of the temporal (a,b) and corresponding spatial (c–f) coefficients is the SST and PDSI anomaly
represented by the MCA mode, with red areas experiencing warming (for SST) and drying (for PDSI) and blue areas for cooling and wetting.

even for the global mean and less so for individual regions. These
results suggest that the global warmingmode fromobservations and
individual model runs contain large natural variations unrelated to
the historical GHG forcing. In other words, the MCA is unable to
completely separate the GHG-forced changes in precipitation and

the sc_PDSI_pm from other unforced natural variations because
the GHG-forced signal up to 2010 is still relatively weak (only
4–6% of the total variance) compared with the natural variations,
especially on regional scales. As most of the natural variations are
realization dependent (for example, coupled to initial conditions),
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Figure 5 | Temporal and spatial patterns of the CMIP5 model for SST and sc_PDSI_pm from 1950 to 2099 under the RCP4.5 future emissions scenario.

large regional differences between the observations (one single
realization) and individual model runs and their ensemble mean
are expected. Thus, the differences over West Africa, the USA,
Brazil, southern Africa and eastern Australia between Fig. 4d,f
probably result from sampling errors among different realizations
and natural variations not reproduced by theCMIPmodel runs.

The differences over the Sahel (10◦N–20◦N, 18◦W–20◦ E)
and the USA in Fig. 4d,f are especially noticeable. The drying
trend since 1950 over the Sahel results mainly from the decreases
in summer rainfall from the 1950s to the mid-1980s (ref. 22)
that are related to the observed large warming in the South
Atlantic Ocean relative to the North Atlantic Ocean and the
steady warming over the Indian Ocean8,11, together with significant
contributions from dynamic vegetation feedback23,24, which is not
simulated in the CMIP models. Most CMIP3 models produce
the opposite warming pattern in the Atlantic Ocean under GHG-
induced global warming and thus increasing precipitation over
the Sahel in the twenty-first century11, although a few models
do produce some drying over the Sahel under a uniform ocean
warming25. Supplementary Fig. S5 shows that the HadGEM2-CC
and HadGEM2-ES models from the CMIP5 broadly reproduce
the observed rainfall decline over the Sahel from the 1950s to
1980s, although with reduced amplitudes, and sulphate aerosols
have been identified as the main contributor for this simulated
decline in the HadGEM2 models26. Apparently, most other CMIP5
models analysed here do not simulate this effect of sulphate
aerosols in the twentieth century. For the twenty-first century,
the GHG effect will dominate over the aerosol forcing and thus
such aerosol-induced drought over the Sahel may not occur
again27. Nevertheless, the HadGEM2 models still show substantial
multidecadal variations in Sahelian rainfall during the twenty-first
century (Supplementary Fig. S5).

The wetting trend over the USA results from the upward trend
from the 1950s to the 1990s; thereafter, the USA as a whole

has become drier (Supplementary Fig. S6a). These multidecadal
variations are linked to the Interdecadal Pacific Oscillation (IPO;
ref. 28), which switched to a warm phase with above-normal
SSTs in the tropical Pacific around 1977 and entered a cold
phase around 1999 (refs 19,28; Supplementary Fig. S6b). The IPO
has major influences on US precipitation and drought, especially
over the southwest USA (ref. 28; Supplementary Fig. S6). As the
IPO cycles in the twentieth century (Supplementary Fig. S6b)
do not follow any known anthropogenic forcing, to a large
extent they are likely to be unforced natural cycles that depend
on the initial conditions of the coupled models and thus are
generally irreproducible.

The above analysis suggests that the differences between Fig. 4d,f
are mainly due to model deficiencies in simulating the effects of
sulphate aerosols in the twentieth century, natural SST variations
not captured by the CMIP models and sampling errors among
different realizations as the GHG-forced signal in sc_PDSI_pm is
still relatively weak up to now. Taking these factors into account,
the overall resemblance of the MCA1 and MCA2—the only two
statistically significant modes—between the observations and the
model simulations has important implications. It suggests that the
global warming mode in the observations is likely to be part of the
GHG-induced warming mode that will become more evident in a
fewmore decades (Fig. 5a); the models are capable of capturing not
only the GHG-induced trend mode (MCA1) seen in observations
(for the global mean only) so far, but also the main physical,
ENSO-like mode (MCA2), which increases our confidence in the
model predictions; and increasing drought (Figs 5c and 2b) may be
likely over most of the Americas, southern Europe, southern and
central Africa, Australia and southeast Asia as the GHG-induced
warming continues in the twenty-first century, although the ability
of the models to simulate the precipitation and PDSI changes over
these regions has yet to be validated. However, the MCA1 patterns
(Fig. 5c) for sc_PDSI_pm for the twenty-first century are fairly
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stable among themodels because of the large forced trend compared
with natural variations in temperature, precipitation and other
variables. They suggest severe drought conditions by the late half of
this century over many densely populated areas such as Europe, the
eastern USA, southeast Asia and Brazil. This dire prediction could
have devastating impacts on a large number of the population if the
model’s regional predictions turn out to be true.

Methods
The method and historical forcing data used to compute the sc_PDSI_pm are
described by ref. 2. Ref. 2 also provides a detailed description of the caveats of
the PDSI and an evaluation of the sc_PDSI_pm. It shows that the sc_PDSI_pm is
significantly correlated with observations of soil moisture over the former Soviet
Union, Mongolia, China and the USA, with streamflow data over the world’s
main river basins, and with satellite observations of water storage changes over
all land areas. In particular, the correlations do not differ greatly over the US and
other regions, including the high-latitude and tropical land areas. These results
suggest that the sc_PDSI_pm can be used as a measure of large-scale annual
aridity changes over global land areas including the cold regions, despite the
simplicity of the PDSI model in treating many land-surface processes such as
vegetation and snow cover.

Ref. 2 compares the impact of two different parameterizations of the potential
evapotranspiration on the PDSI and finds that the PDSI with the Penman–Monteith
potential evapotranspiration (sc_PDSI_pm) showed slightly reduced drying trends
from 1950 to 2008 compared with that using the Thornthwaite potential
evapotranspiration. For model-predicted twenty-first-century climates, the
use of the Penman–Monteith potential evapotranspiration greatly reduces
the drying trend1.

I used the Hadley Centre Sea Ice and Sea Surface Temperature data set data
set29 in the MCA analysis. The MCA is a standard singular value decomposition
method17 that is useful for exploring relationships between two separate fields,
although physical interpretations of the MCAmodes require additional knowledge.
The analysis here focused on the period from 1923 onward, as tropical SST and
other data for earlier years are less reliable. The CMIP3 (used for Intergovernmental
Panel on Climate Change Fourth Assessment Report; ref. 21) and new CMIP5
model simulations were downloaded from http://cmip-pcmdi.llnl.gov/. I used only
one ensemble run from the historical and future simulations for each model and
the intermediate GHG emissions scenario Special Report on Emissions Scenarios
A1B (for CMIP3) and Representative Concentration Pathway 4.5 (RCP4.5) (for
CMIP5) were used (see http://www.ipcc.ch/ipccreports/sres/emission/index.php?
idp=14 for more details). I used data from 14 CMIP5 models with data available
in November 2011 and most (22) of the CMIP3 models. The 14 CMIP5 models
are CNRM-CM5, CSIRO-Mk3-6-0, CanESM2, GISS-E2-R, HadGEM2-CC,
HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM, MIROC-ESM-CHEM, MIROC4h,
MIROC5, MPI-ESM-LR, MRI-CGCM3 and inmcm4. Only 11 of these models
provided soil-moisture data (13 for CMIP3 models). I used the multimodel
ensemble-averaged data in the MCA and change analysis, except stated otherwise
(for example, in Supplementary Figs S3 and S4).
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In the version of this Letter originally published, in the sentence beginning “As SSTs have large influences on land precipitation…”, the 
latitude range of sc_PDSI_pm included in the maximum covariance analysis should have read 60° S–75° N. This error has now been 
corrected in the HTML and PDF versions (note that the ‘corrected after print’ date in these online versions differs from that given in print).
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